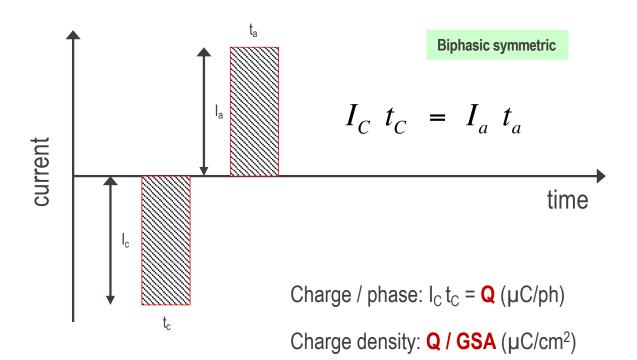
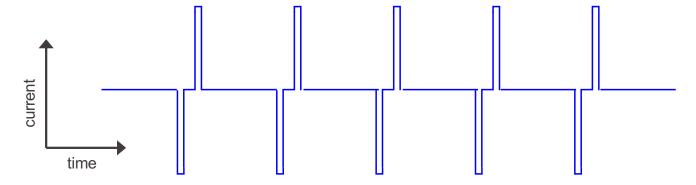

Neural stimulation neuromodulation


- Current flowing between 2 electrodes will
 stimulate the tissue at the cathode (negative electrode)
 resist excitation at the anode (positive electrode)
- Cathodic stimulation: depolarization of the cell membrane i.e. generation of an action potential

The water window

- Electrochemical window within which the electrode material is neither oxidized nor reduced.
- The electrolyte, the solvent and the nature of the working electrode influence the potential window
- Water electrolysis requires 1.23V (potential across 2 inert electrodes)
 - -0.6V +0.8V



Constant current pulses

Neural stimulation

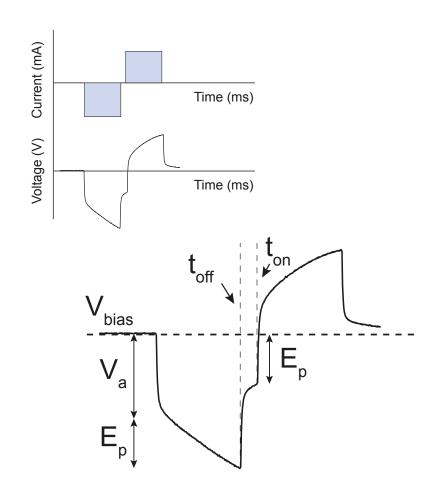
Applying a train of current pulses to the target tissue

Challenge: produce reversible charge-injection chronically

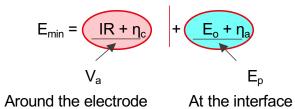
Voltage transient measurements

- Estimate the maximum charge that can be injected in a currentcontrolled stimulation pulse
- 3-electrode setup (in vitro)
 - Determine maximum polarization (most negative and positive potentials)
 - Safe boundaries: water window and reduction potentials

$$\Delta V = i_c R_i + \eta_c + \eta_a + \Delta E_0$$


R_i electrolyte resistance

 η_c concentration overpotential η_a activation overpotential


 ΔE_0 shift in the equilibrium potential

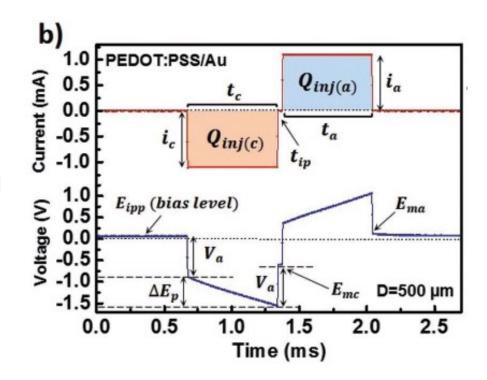
NX-422 ©LSBI

Voltage transient in response to a biphasic current pulse

- V_{bias}: equilibrium potential (half-cell potential)
- V_a: Access voltage (ohmic drops)
 - IR drop in the interconnect
 - IR drop in the tissue/electrolyte
 - · Concentration overpotential
- E_p: Electrode polarisation at the interface
 - Activation overpotential
 - · Potential equilibrium shift
- E_{min}: Minimum cathodic polarization = V_a + E_p

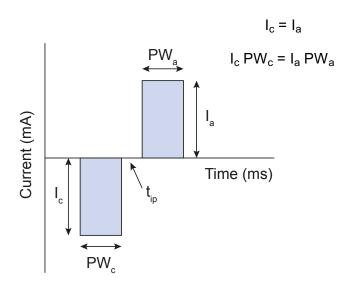
NX-422 ©LSB

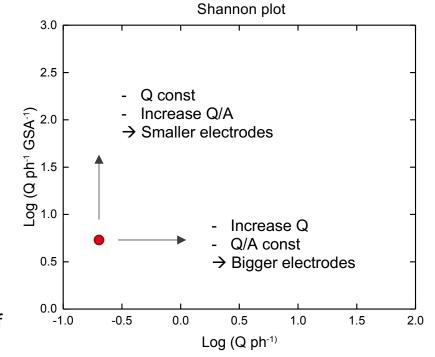
CIC Charge Injection Capacity


• E_{mc}:

 maximum cathodal electrochemical potential excursions calculated by subtracting V_a from the maximum negative voltage transients or the electrode potential immediately, (when V_a is zero)

E_{ma}:

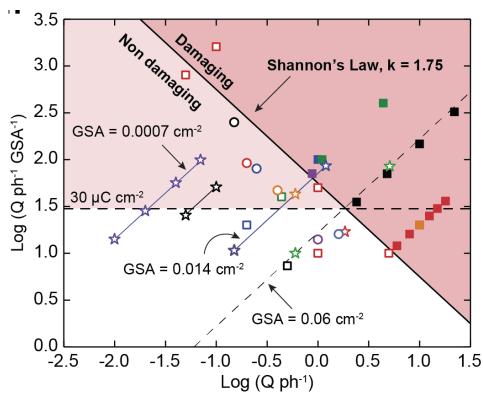

- maximum anodic electrochemical potential excursions
- Injected charges: Q_{inj} = Q_{inj(b)} + Q_{inj(a)}
- CIC:
 - total charge density at which either E_{mc} reaches water reduction potential (cathodal limit) and/or E_{ma} reaches water oxidation potential (anodal limit).


$$CIC = Q_{ini.c} / GSA$$

Shannon Plot

Biphasic, cathodic leading, charge balanced, symmetric pulses

effect of electrode size

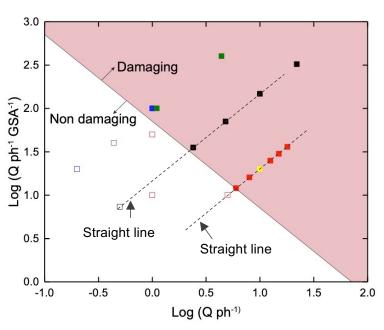

When discussing safety and often for ease of comparison:

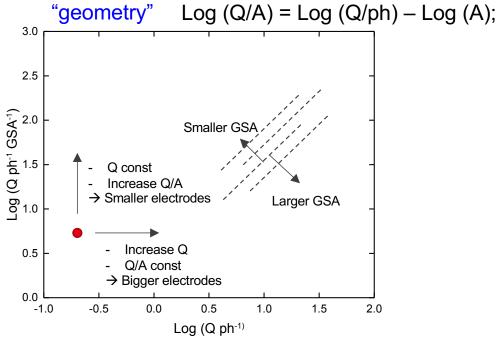
- $Q/ph. = I_c PW_c$
- Q/GSA = Q/ph./GSA

 $[\mu C \text{ ph}^{-1}]$ $[\mu C \text{ ph}^{-1} \text{ cm}^{-2}]$

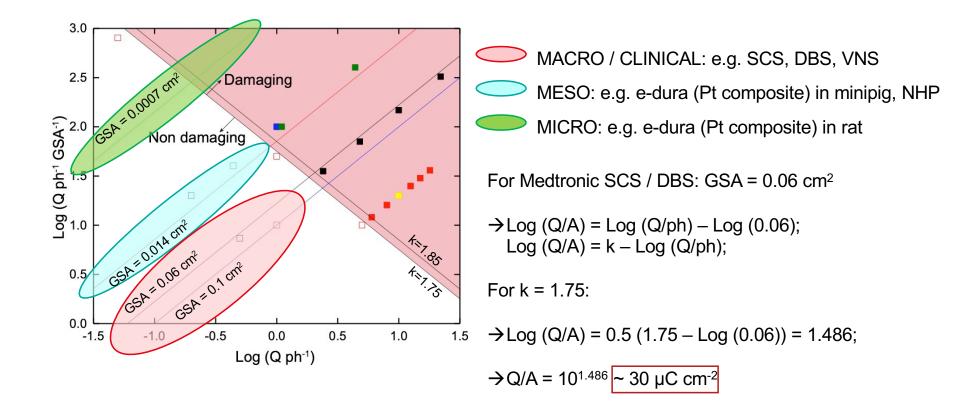
Charge vs charge density for safe stimulation

"the Shannon limit" $\log \left(\frac{\mathcal{L}}{\mathcal{L}}\right)$ 1.5<k<2

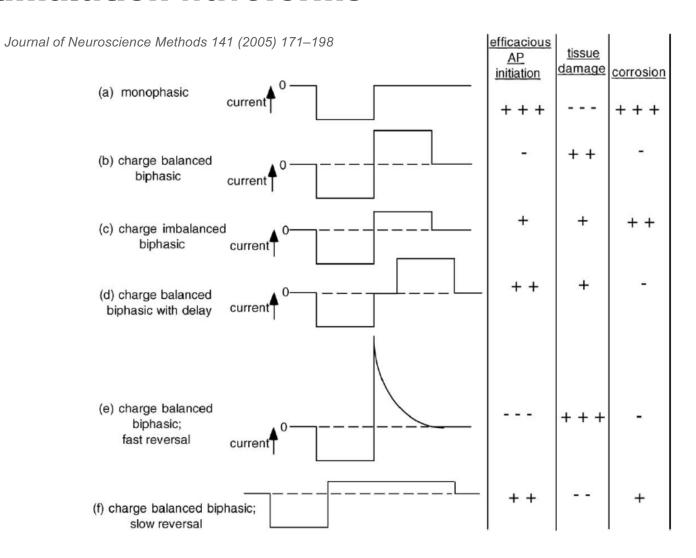



- Brown 1977, Cerebellum NHP
- Yuen 1981. Cortex feline
- Agnew 1983, Cortex feline
- McCreery 1988, Cortex feline
- McCreery 1990, Cortex feline
- Agnew 1993, Cortex feline
- ★ Minev 2015, SCS rat
- Garcia-Sandoval 2018, SCS rat
- ★ Schiavone 2018, SCS minipig★ Schiavone 2020, SCS NHP
- Salinsky 1996, VNS human
- O Mahadevappa 2005, Retina human
- O Schrader 2006, ECoG human
- O Shepherd 2006, Cochlea human
- ★ Abejon 2007, SCS human
- O Balthasar 2008, Retina human
- O Fujikado 2011, Retina human
- ☆ Wagner 2018, SCS human

UNSAFE: irreversible electrochemical reaction tissue damage neuronal hyperactivity


Geometric surface area GSA on Shannon plot

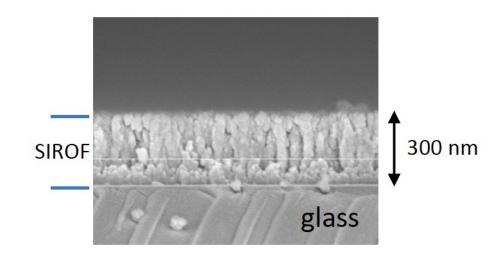
"the Shannon limit" $\log \left(\frac{Q}{A}\right) = k - \log(Q)$ "geometry" $\log \left(\frac{Q}{A}\right) = \log \left(\frac{Q}{A}\right) = \log$



The 30 μC.cm⁻² limit

Stimulation waveforms

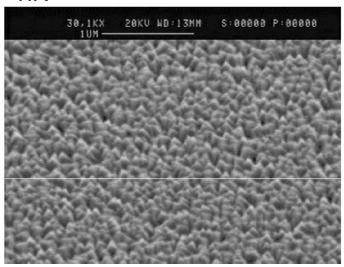
Electrochemical and biological safety in neural stimulation

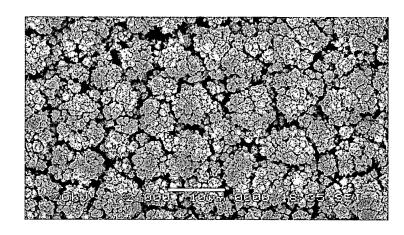

- For different materials, geometries and pulses, the CIC limits vary widely
- CIC does not scale linearly with electrode area, but with electrode perimeter
- Macroelectrodes (GSA > 1cm²)
 - $Q_{ini} < 50 \mu C / cm^2$

EPFL Platinum

- « pseudo-capacitive » interface (surface redox process)
- Modest charge-injection capacity: < 100µC / cm²
- « the » clinical electrode material

EPFL Iridium oxide

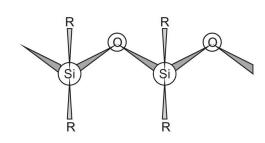

- Most charge injection is by redox processes
- Fabrication
 - Electrodeposition
 - Sputtering
 - Thermal deposition
 - → Requires activation


Charge injection: 1-8mC/cm²

Porous - Rough structures

Platinum grey

Electrode material	Q _{inj} (mC/cm²)	Water window
Platinum	0.1-0.2	-0.6 to 0.8V
Titanium nitride	1	-0.9 to 0.9V
Platinum black	1	-0.6 to 0.8V


Insulating materials

- Many insulating materials but few are suitable for direct immersion into biological systems
 - Evaluation under saline conditions is required
 - In vitro vs in vivo
- Accelerated testing
 - insulator monitor, 4-point resistance,
 - Young's modulus monitor, surface bonding monitors
- Accelerating degradation
 - Elevated temperature (but can alter chemical reactions)

NX-422 ©LSB

EPFL

Silicones encapsulation / packaging

- Long-lasting material
- Polymer with simultaneous presence of organic groups attached to inorganic atoms
- Silicone elastomers (rubbers)
 - Molding, injection, spin-coating, printing
 - Cross-linked polymer
- Soft polymer : elastic modulus range: 10 kPa 10 MPa
- Very good protection over corrosion of silicon and oxidizable materials
- Very good electrical insulators (esp. Fluoropolymers)

Take-home message The « optimal » electrode

- Low energy consumption for stimulation
- Effective charge injection at geometrically small electrode sites
- High reversible charge injection limits
- Low polarization at the phase boundary
- Low and stable impedance
- Low frequency dependence of the impedance
- Low electrochemically induced noise
- Long term stability over decades in the body
- Biotolerance of the materials